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Appendix E

Decibels

Each of these amplifiers has a gain of 3 decibels (3 dB). That means the output 
signal is twice as strong as the input signal.
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The decibel is one unit that you 
will hear used (and sometimes 
misused) quite often in electronics. 
Just what does this term mean? First 
we’ll define the term, and then we’ll 
take a look at some of the ways we 
use decibels in electronics.

You have probably recognized 
deci as the metric prefix that means 
one-tenth. So the unit we are really 
talking about here is the bel, and 
a decibel is just 1 ⁄10 of a bel. We 
often use a capital B to abbreviate 
bel. Since a lower case d is the 
abbreviation for deci, the proper 
abbreviation for a decibel is dB. The 
bel is named for Alexander Graham 
Bell. Most people remember Bell for 
his invention of the telephone. Bell 
was also very interested in working 
with deaf people and studying the 
way we hear sounds. Bell tried to 
invent a device that would amplify 
sounds, to help people with a partial 
hearing loss. The telephone is a result 
of this work.

We can hear very soft sounds, 
like a leaf rustling through the other 
leaves on a tree as it falls. We also 
can hear sounds that are extremely 
loud. A jackhammer pounding the 
pavement on a city street or the 
roar of a nearby jet engine are some 
examples. Some sounds can be so 
loud that they actually cause us 
pain. These painfully loud sounds 
can be nearly 1 × 1012 (yes, that’s a 
million million) times louder than 
the soft rustling of the leaves or a 

quiet whisper, yet we can hear sounds 
within this full range.

To make the numbers easier to 
work with, we often use logarithms 
to represent the numbers on such a 
wide scale. We could say that our 
ears have a logarithmic response 
to sound loudness or intensity. The 
bel compares the loudness of two 
sounds with each other. One of these 
sounds serves as a reference for the 
comparison. To calculate how many 
bels louder or softer the second 
sound is, simply divide the reference 
intensity into the other value. Then 
find the logarithm of that result.
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           (Equation E-1)

where:
I

0
 is the intensity (or loudness) of 

the reference sound
I

1
 is the intensity of the sound 

compared to the reference

Use the quieter sound intensity 
(a smaller number) as the reference 
sound to get a positive value of bels. 
If you use the louder sound intensity 
as the reference sound, however, you 
get the same value but with a negative 
sign. So a positive value of bels 
indicates a sound is louder than the 
reference sound. A negative value of 
bels indicates a sound is quieter than 
the reference.

Painfully loud sounds can be 
as much as 1 × 1012 times louder 
than the softest sounds we can hear. 

Use that number as the ratio I
1
/I

0
 in 

Equation E-1, and calculate the range 
of our hearing, in bels.
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(Equation E-1)

bels = log (1 × 1012) = 12

We can hear sounds that differ 
in intensity by as much as 12 bels. 
Normal sounds in your home, like 
soft music, conversation or the TV 
are about 4 to 7 bels louder than the 
softest sounds you can hear.

Sound intensity is similar to 
sound power, so we can apply the 
bel to power levels in electronics. 
The bel is a rather large unit, even to 
compare sound intensity levels, so we 
normally use the decibel. It takes 10 
decibels to make one bel. Therefore, 
the equation to compare two power 
levels in decibels is 10 times the 
equation to calculate bels.
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(Equation E-2)

where
P

0
 is the reference power level 

P
1
 is the power level compared to 
the reference

Let’s look at an example to help 
you understand bels and decibels. 
Remember that we use a ratio of two 
power levels, which means we divide 
one power by a reference,  

Defining the Bel

Figure E-1 — This diagram shows a power level measured at the output of an Amateur Radio transmitter. The dia-
gram also shows power levels after the signal goes through a power amplifier and a long length of coaxial cable.
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or comparison, power.
Suppose we measure the output 

power from an Amateur Radio 
transmitter, and find that it is  
15 watts. If we use a power amplifier 
after the transmitter, and measure the 
power again, we measure 1500 W, 
as shown in Figure E-1. What is the 
gain, or power increase, provided by 
this amplifier? To solve this problem, 
we will use the 15 W power as the 
reference. We want to compare the 
amplified power with this value. 
Equation E-2 will help us answer the 
question.
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1500 WdB 10 log
15 W

 
=  
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dB = 10 log (100) = 10 log (102)

dB = 10 × 2 = 20 decibels

The amplifier provides a 20 dB 
increase in power. This example 
shows how to do the calculation. In 
a real Amateur Radio station, we 
would probably use one amplifier 
to go from 15 to 150 watts. Then 
another amplifier would increase the 
power from 150 to 1500 watts. Each 
amplifier would have a gain of 10 dB, 
which is a more realistic figure.

Did you notice in the equations 
above that the log of 100, which is 
the log of 102, is 2. Log is short for 
logarithm, and two words that mean 
the same as logarithm are exponent 
and power. So the log of 1000 equals 
the log of 103 equals 3. What’s the log 
of one million?

If you thought that one million is 
106, and the log of 106 is simply 6, 
you’re right! When you need to find 
the log of a number that’s not 10, or 
100, or 1000 (etc.), that’s when your 
calculator will come in handy. Find 
the log of 500 on your calculator by 
pressing the following calculator 
keys: 

LOG   5   0   0   =

The answer is that the log of 500 = 
log (500) = 2.7.

What happens if the power 
decreases? Well, let’s look at an 
example and find out. We can 
continue with the problem above, and 
measure the actual power arriving 
at the antenna. In this station, a long 
length of coaxial cable connects the 
transmitter to the antenna. Because 
some power is lost in this cable, 
we measure only 150 watts at the 
antenna. This time we’ll use the  
1500 W amplifier output as our 
reference. We want to compare 
the power at the antenna with the 
amplifier power. Again, Equation E-2 
helps us answer our question.
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150 WdB 10 log
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dB = 10 log (0.10) = 10 log (10–1)

dB = 10 × (–1) = –10 decibels

The negative sign tells us that we 
have less power than our reference. 
Of course, we knew that because 
there was less power at the antenna 
than the amplifier was producing. 
What happened to that power? Some 
of the energy going through the 
coaxial cable changed to heat, and 
there may be other losses in the cable. 
All coaxial cables would have some 
loss. If you have a cable with 10 dB  
of loss in any reasonable length, 
however, it’s probably no good! 10 dB  
of cable loss means that 90% of the 
power entering it is lost to heat, and 
that leaves only 10% at the cable 
output. If the loss were 20 dB (a 
really bad situation), then 99% of the 
power entering it would be lost to 
heat, and that would leave only 1% 
at the cable output. It would be time 
to change something: either move 
the antenna and transmitter closer 
together (shorter cable means less 
loss), or get a much better cable.
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We often use decibels to compare 
power levels in electronic circuits. 
How do you find the number of 
decibels? First select the power you 
want to use as the reference power 
to which other power levels will be 
compared. This reference power often 
is the beginning power. It may be the 
power before the signal goes through 
an amplifier or through a line to an 
antenna. Next, divide the new power 
(the amplifier output power, or the 
power that reaches the antenna) by 
your chosen reference power. Now 
find the logarithm of that power-level 
ratio. Finally, multiply the result by 
ten. A few examples will show you 
how easy it is to calculate decibels.

You won’t even need a calculator 
to find the logarithm when the ratio 
is a number like 10, 100, 1000 and 
so on! Multiples of 10 less than 1, 
like 0.1, 0.01, 0.001 and so on are 
also easy. Use your calculator as we 
work through a few examples. You’ll 
soon be doing logarithms like these 
without it, though. Here are some 
simple examples.

log (1) = log (100) = 0

log (10) = log (101) = 1

log (100) = log (102) = 2

log (1000) = log (103) = 3

log (0.1) = log (10–1) = –1

log (0.01) = log (10–2) = –2

log (0.001) = log (10 –3) = –3

Let’s suppose you have an amateur 
transmitter that operates on the 
2-meter band. Your transmitter has 
an output power of 10 watts, but you 
would like a little more power to use 
to make contact with a distant station. 
An amplifier is just what you need. 
After connecting your new amplifier, 
you measure the output power again, 
and find it is now 100 watts. How 

many dB increase is this? We’ll use 
the 10-W signal as the reference in 
this case. Divide 100 W by 10 W to 
find the power ratio.
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where
P

0
 is the reference power level

P
1
 is the power level compared to 
the reference power 
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= = =

Now find the logarithm of the power 
ratio.

log (10) = log (101) = 1

Finally, multiply this result by

10 decibels = 10 × 1 = 10

Your amplifier has increased the 
power of your 2-meter signal by  
10 dB!

Now suppose the amplifier 
increased your signal to 1000 watts. 
Choose the reference power to be  
10 W again, and divide the new 
power by the reference.
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= = =

Find the logarithm of the power ratio. 

log (100) = log (102) = 2

Multiply this result by 10 to find the 
number of decibels. 

decibels = 10 × 2 = 20

If we put all these steps together 
into a single equation, we have the 
definition of a decibel.
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(Equation E-4)

where
P

0
 is the reference power level

P
1
 is the power level compared to 
the reference power 

Use this equation to calculate the 
number of decibels between power 
levels.

You should be aware of certain 
power ratios, because they occur so 
often. For example, let’s see what 
happens if we double a given power. 
Suppose we start with a circuit that 
has a power of 2 mW. What dB 
increase occurs if we double the 
power to 4 mW? We’ll start with the 
basic definition of a decibel.
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4 mWdB  10 log 
2 mW

10 log (2) 10  0.3 3.0 dB

=  
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= = × =

When we double the power, there 
is a 3 dB increase. This is true no 
matter what the actual power levels 
are. Let’s look at an example with 
higher power levels to show that the 
dB increase is the same.

We measure the transmitter output 
power at an Amateur Radio station 
like the one shown in Figure E-2, and 
find that it is 10 W. Use this power 
as a reference power for the station. 
After making some adjustments to the 
circuit, we measure the transmitter 
output power again. This time we find 
that the output power has increased to 
20 W. What is the power increase, in 
dB? Equation E-4 will help us answer 
this question.
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20 WdB  10 log 
10 W

10 log (2) 10  0.3 3.0 dB

=  
 

= = × =

Decibels and Power Ratios
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So our transmitter adjustments gave 
us a 3 dB increase in transmitter 
power.

Suppose you measured the power 
output from another transmitter, and 
found it to be 100 W. Later, after 
experimenting with a new circuit 
in the transmitter, you measure the 
output power as 50 W. What effect 
did your experiment have on the 
output power? What is the power 
change in decibels? Again, Equation 

E-4 will help answer this question. 
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Although the power levels in our 
two examples were much different, 

we still had a 3 dB change. This is an 
important point about the decibel. It 
compares two power levels. The 
number of decibels depends on the 
ratio of those levels, not on the actual 
power. The 3 dB value is also 
important, because it shows that one 
power level was twice the other one. 
Increasing a power by two  
gives a 3 dB increase and cutting  
a power in half gives a 3 dB  
decrease.

Whenever you multiply or divide 
the reference power by a factor of 
2, you will have a 3 dB change in 
power. You might guess, then, that 
if you multiplied the power by 4 it 
would be a 6 dB increase. If you 
multiplied the power by 8 it would be 
a 9 dB increase. You would be right 
in both cases!

Suppose the power in part of a 
circuit such as the one shown in 
Figure E-3 measures 5 milliwatts 
and in another part of the circuit it 
measures 40 mW. Using the 5-mW 
value as the reference power, how 
many decibels greater is the 40-mW 
power?
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Figure E-2 — The output power from an Amateur Radio transmitter is 
10 watts. After making some adjustments to the transmitter tuning, you 
measure the power again. Now you find the power has increased to 
20 watts. The text describes how to calculate the decibel increase that 
occurred.

Figure E-3 — A simple amateur transmitter amplifies the signal from an oscillator and then feeds that signal to 
an antenna. It uses several amplifier stages. The input power to one of those stages is 5 milliwatts and the output 
from that stage is 40 milliwatts. The text describes how to calculate the gain of that amplifier stage.
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